Objective:
To apply tolerancing optimization techniques using multiple analytical methods to a wide variety of components and sub-assemblies, from the very simple to the more complex analysis.

Course Length:
2 days (16-hours) – 1.6 CEU’s

Course Content:
Tolerancing Optimization
- Create tolerance stack-up analysis for both plus/minus tolerated dimensions and geometric tolerances
- Calculating boundaries using MMC, LMC and RFS Material Condition modifiers and apply transformation principles to different tolerancing scenarios to ensure optimal design intent
- Analysis using single-segment and composite feature control frames using Position and Profile

Intermediate Concepts of Tolerance Analysis
- Derived inner and outer boundaries using floating and fixed fastener formulas
- Create number charts for stack-up analysis using a variety of geometric tolerances, basic dimensions, resultant conditions, virtual conditions and plus and minus tolerated dimensions
- Calculate the effects of angular stack-up contributors
- Calculate minimum and maximum gaps for components and assemblies
- Do stack-up analysis for floating and fixed fastener situations for various applications
- Analysis and implications of different datum reference frames and implications of form errors in the analysis

Advanced Concepts of Tolerance Analysis
- Understand vector-loop analyses and monty-carlo simulations

Targeted Audience:
Anyone with the responsibility of specifying, analyzing and applying tolerances to mechanical components and assemblies, tooling, equipment, fixtures or gages, or anyone requiring a more thorough understanding of tolerancing optimization and analysis. Specifiers and decision makers of engineering requirements and specifications as well as specifiers of manufacturing processes and measurement applications and anyone doing statistical analysis of design, manufacturing or measurement data. Engineers, designers, metrologists, technicians, machinists, toolmakers, designers, senior inspectors, senior technicians, statisticians and mechanical engineers at all levels.

Prerequisites:
GD&T - Advanced Applications! An advanced knowledge of GD&T is required to allow all participants to be successful in learning tolerancing optimization and tolerance analysis techniques. If not proficient in GD&T at an advanced level it is strongly recommended that all individuals take or retake the advanced course prior to the tolerancing optimization and analysis course to ensure an optimum and proficient level of understanding.